Run II PMG Stacking Rapid Response Team Report

Dave McGinnis February 16, 2006

January Antiproton Study Period

- Quad Steering of the AP1 line
 - Not finished
- Alignment of the Debuncher horizontal orbit and moveable devices.
 - Did not do arcs
 - Need to Energy align the AP2-Debuncher-Accumulator
 - \triangleright Horizontal Aperture up to 35π -mm-mrad!!!
- Installation and commissioning of Debuncher lattice modifications
 - > First round done
 - \triangleright Vertical aperture up to 34π -mm-mrad
- Removal of the Debuncher Schottkies
 - Completed
- Obstruction search of the AP2 line.
 - Completed none found
- Installation of 4 additional AP2 trims
 - Two trims installed
 - Two trims staged
- D/A Beam based alignment
 - > Completed to the Q3-Q6 straight section
- Accumulator orbit and aperture optimization
 - Underway
 - Backed out of orbit changes
 - Need to update quad centering software
 - Need to de-bug running wave software
 - Will only complete moveable devices

Returning to Stacking After the Studies

- Production into the Debuncher was good
- Overall production was a function of the amount of beam on target.
- Possible explanations
 - > Spot size on target vs proton intensity
 - > Bunch length on target vs proton intensity
 - > Debuncher transverse cooling
 - Far away from optimum gain
 - Not tripping TWT's
 - > Accumulator Stacktail Flux
- Measure production at various places along the chain as a function of intensity on target

Antiproton Flux vs Intensity on Target

Antiproton Stacking - Stacktail System

 The time evolution of the antiproton phase space during cooling is best described by the Fokker-Plank Equation

$$\frac{\partial \psi}{\partial t} = -\frac{\partial \phi}{\partial E}$$

$$\phi_{c} = \frac{\Delta E_{c}}{T_{o}} \psi = eV_{o} f_{o} \psi \sum_{n} Re \{G_{n}(E)\}$$

$$\phi_{h} = \frac{1}{2} \frac{\Delta E_{h}^{2}}{T_{o}} \frac{\partial \psi}{\partial E} = \frac{1}{4} (eV_{o}f_{o})^{2} \frac{E_{o}}{\eta f_{o}} \psi \frac{\partial \psi}{\partial E} \sum_{n} |G_{n}(E)|^{2}$$

 Optimum profile that maximizes dy/dE for a constant stacking rate is exponential

$$G_n(E) = g_o e^{-\frac{E}{E_d}}$$
 $\psi(E) = \psi_o e^{\frac{E}{E_d}}$

$$\psi_{o} = \frac{N_{T} P_{D}}{\Delta E_{bD}}$$

Antiproton Stacking - Stacktail System

- The measured Accumulator 2-4 GHz Stacktail system can support a flux of 30mA/hr.
- The currently used 2-4 GHz core momentum system is the same frequency as the Stacktail system
 - > At a flux of 15mA/hr, the core 2-4 GHz system can support a exponential gain slope that is a factor of two larger than the gain slope of the Stacktail.
 - As the number of particles in the core increases, the factor of 2 gain slope is exceeded and the core pushes back on the Stacktail and the flux must be reduced.
- For large fluxes into the Stacktail, the 2-4 GHz core momentum system cannot support a core.

Antiproton Stacking - Stacktail System and the Core 4-8 GHz System

- To support a core at high flux, the 4-8 GHz core momentum system must be used.
- Because the 4-8 GHz core system runs at twice the frequency, the electrodes are $\frac{1}{2}$ the size so the system has a factor of two smaller momentum reach.
- Moving the core closer to Stacktail to accommodate the smaller reach resulted in system instabilities at moderate stacks.

• We now:

- ➤ Use the 2-4 GHz core momentum system to augment the hand-off between the Stacktail and the 4-8 GHz core momentum system
- > Run the 4-8 GHz core momentum system at MUCH larger gain.
- > Run the Stacktail during deposition debunching to preform the distribution to match the Stacktail profile

Core 4-8 GHz Momentum Cooling System bandwidth

- 1 GHz of bandwidth at 7 GHz is ~3x more powerful than 1 GHz of bandwidth at 2.5 GHz
- With simple redesign of the system equalizers, the 4-8 GHz system will be 5.7x more powerful than the 2-4 GHz system


```
Machine: ACCUMULATOR
Cooling System: ACC CORE MOM 4-8 GHz
Measurement Type: MOMENTUM
Record Number: 65
Beam Current: 2.4518 mA
Bandwidth (GHz) 0.976623
Phase Delay (pSec) 6.43
Phase Offset (Deg) -90.0
Search Range (pSec) 100.0
Search Resolution (pSec) 1.00
Rev. Fred. (Hz) 628875.00 Tune 0.700
```

Stacking Performance

Antiproton Parameters

	Antiproton Parameters						
Phase	1	2	3	4	5	6	
Zero Stack Stacking Rate	13.0	16.0	18.9	30.2	30.2	30.2	x10 ¹⁰ /hour
	13.0	16.0	16.6	25.2	25.2	25.2	
	13.0	16.0	16.6	20.2	20.2	20.2	
	13.0	16.0	16.0	16.0	16.0	16.0	
Average Stacking Rate	6.3	7.4	9.6	21.7	21.7	21.7	x10 ¹⁰ /hour
	6.3	7.4	8.5	14.8	17.4	17.4	
	6.3	7.4	8.5	11.3	11.3	13.3	
	6.3	7.4	8.3	8.3	8.3	9.7	
Stack Size transferred	158.2	163.8	211.5	476.5	476.5	476.5	x10 ¹⁰
	158.2	163.8	187.9	324.7	382.5	382.5	
	158.2	163.8	187.9	248.6	248.6	293.5	
	158.2	163.8	181.5	181.5	181.5	214.5	
Stack to Low Beta	117.1	124.5	169.2	381.2	381.2	381.2	x10 ¹⁰
	117.1	124.5	144.7	253.3	298.3	298.3	
	117.1	124.5	144.7	191.4	191.4	226.0	
	117.1	124.5	138.0	138.0	138.0	163.0	
Pbar Production	16.0	15.0	16.0	21.0	21.0	21.0	x10 ⁻⁶
	16.0	15.0	15.0	17.5	17.5	17.5	
	16.0	15.0	15.0	16.0	16.0	16.0	
	16.0	15.0	15.0	15.0	15.0	15.0	
	FY04 Plan	Slip Stacking	Recycler Ecool	Stacktail	Helix	Reliability	

Future Pbar Work

- Lithium Lens (0 25%)
 - Lens Gradient from 760T/m to 1000 T/m
- Slip Stacking (7%)
 - Currently at 7.5x10¹² on average
 - \triangleright Design 8.0x10¹² on average
- AP2 Line (5-30%)
 - > Lens Steering
 - > AP2 Steer to apertures
 - > AP2 Lattice
- Debuncher Aperture (13%)
 - Currently at 30-32um
 - Design to 35um

- DRF1 Voltage (5%)
 - Currently running on old tubes at 4.0 MEV
 - > Need to be a t 5.3 MeV
- Accumulator & D/A Aperture (20%)
 - > Currently at 2.4 sec
 - > Design to 2.0 sec
- Stacktail Efficiency
 - > Can improve core 4-8 GHz bandwidth by a factor of 2
- Timeline Effects
 - > SY120 eats 7% of the timeline

Proposed Pbar Studies Review

Operational Issues (Drendel & Johnson)

- > Setup one-shots for circ beam in Deb
- > Setup Deb partial turn beam up AP2
- > Setup AP2 extraction of Deb circ beam
- > Setup for D/A orbit studies

Debuncher Orbit

- > Deb Orbit/BPM-Quad offset determination (Gollwitzer)
- > Deb Orbit Correction(Gollwitzer)
- > Deb Component Centering (Werkema)
- > Deb Electrical Centering (Gollwitzer)
- > Deb Lattice Measurements (Nagaslaev)

AP2

- > Setting of the AP2-Deb Injection Region (McGinnis)
- > AP2 and Deb survey (Harms)
- Lattice Design (Lebedev)
- > AP2 Orbit/BPM-Quad offset determination (Gollwitzer)
- > AP2 Orbit Correction (Gollwitzer)
- > AP2 Lattice Measurements (Nagaslaev)

Proposed Pbar Studies Review

D/A Line

- > Acc Injection region (kicker & septa) (Derwent)
- > D/A Beam Based Alignment (Derwent)
- > Acc Injection channel and orbit Apertures (Derwent)
- > Deb Reverse Proton TBT system (Vander Meulen)
- > D/A Kicker time during stacking (Ashmanskas)
- DRF2 timing (Ashmanskas)

Accumulator Aperture

- > Quad centers on the Accumulator (Werkema)
- > Orbit Correction in the Accumulator (McGinnis)
- Moveable devices (Werkema)

Stacking

- > P1-P2-AP1 drift and auto-tune (McGinnis)
- > AP2 Orbit drift and correction (McGinnis)
- Stacking Losses in AP50 (Werkema)